Selectivity Changes during Activation of Mutant Shaker Potassium Channels
نویسندگان
چکیده
Mutations of the pore-region residue T442 in Shaker channels result in large effects on channel kinetics. We studied mutations at this position in the backgrounds of NH2-terminal-truncated Shaker H4 and a Shaker -NGK2 chimeric channel having high conductance (Lopez, G.A., Y.N. Jan, and L.Y. Jan. 1994. Nature (Lond.). 367: 179-182). While mutations of T442 to C, D, H, V, or Y resulted in undetectable expression in Xenopus oocytes, S and G mutants yielded functional channels having deactivation time constants and channel open times two to three orders of magnitude longer than those of the parental channel. Activation time courses at depolarized potentials were unaffected by the mutations, as were first-latency distributions in the T442S chimeric channel. The mutant channels show two subconductance levels, 37 and 70% of full conductance. From single-channel analysis, we concluded that channels always pass through the larger subconductance state on the way to and from the open state. The smaller subconductance state is traversed in approximately 40% of activation time courses. These states apparently represent kinetic intermediates in channel gating having voltage-dependent transitions with apparent charge movements of approximately 1.6 e0. The fully open T442S chimeric channel has the conductance sequence Rb+ > NH4+ > K+. The opposite conductance sequence, K+ > NH4+ > Rb+, is observed in each of the subconductance states, with the smaller subconductance state discriminating most strongly against Rb+.
منابع مشابه
Macroscopic Na+ Currents in the “Nonconducting” Shaker Potassium Channel Mutant W434F
C-type inactivation in Shaker potassium channels inhibits K+ permeation. The associated structural changes appear to involve the outer region of the pore. Recently, we have shown that C-type inactivation involves a change in the selectivity of the Shaker channel, such that C-type inactivated channels show maintained voltage-sensitive activation and deactivation of Na+ and Li+ currents in K+-fre...
متن کاملIntermediate Conductances during Deactivation of Heteromultimeric Shaker Potassium Channels
A previous study of the T442S mutant Shaker channel revealed activation-coupled subconductance levels that apparently represent kinetic intermediates in channel activation (Zheng, J., and F.J. Sigworth. 1997. J. Gen. Physiol. 110:101-117). We have now extended the study to heteromultimeric channels consisting of various numbers of mutant subunits as well as channels without mutant subunits, all...
متن کاملHidden Markov Model Analysis of Intermediate Gating Steps Associated with the Pore Gate of Shaker Potassium Channels
Cooperativity among the four subunits helps give rise to the remarkable voltage sensitivity of Shaker potassium channels, whose open probability changes tenfold for a 5-mV change in membrane potential. The cooperativity in these channels is thought to arise from a concerted structural transition as the final step in opening the channel. Recordings of single-channel ionic currents from certain o...
متن کاملRole of the S3-S4 Linker in Shaker Potassium Channel Activation
Structural models of voltage-gated channels suggest that flexibility of the S3-S4 linker region may be important in allowing the S4 region to undergo large conformational changes in its putative voltage-sensing function. We report here the initial characterization of 18 mutations in the S3-S4 linker of the Shaker channel, including deletions, insertions, charge change, substitution of prolines,...
متن کاملVoltage-insensitive Gating after Charge-neutralizing Mutations in the S4 Segment of Shaker Channels
Shaker channel mutants, in which the first (R362), second (R365), and fourth (R371) basic residues in the S4 segment have been neutralized, are found to pass potassium currents with voltage-insensitive kinetics when expressed in Xenopus oocytes. Single channel recordings clarify that these channels continue to open and close from -160 to +80 mV with a constant opening probability (Po). Although...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 110 شماره
صفحات -
تاریخ انتشار 1997